|
CC(C)(C)C(C)(C1CC23CCC1(C4C25CCN(C3CC6=C5C(=C(C=C6)O)O4)CC7CC7)OC)O |
Approved |
|
Mu opioid receptor
,
OPRK1
,
OPRD1
|
opioid receptors binding
|
Pjrek, E., Frey, R., Naderi-Heiden, A., Strnad, A., Kowarik, A., Kasper, S. and Winkler, D., 2012. Actigraphic measurements in opioid detoxification with methadone or buprenorphine. Journal of Clinical Psychopharmacology, 32(1), pp.75–82
,
Gauthier, E.A., Guzick, S.E., Brummett, C.M., Baghdoyan, H.A. and Lydic, R., 2011. Buprenorphine disrupts sleep and decreases adenosine concentrations in sleep-regulating brain regions of Sprague Dawley rat. Anesthesiology, 115(4), pp.743–753.
|
|
C[N+]1(CCC(C1)OC(=O)C(C2CCCC2)(C3=CC=CC=C3)O)C.[Br-] |
Approved |
|
Muscarinic acetilcholine receptror M1
|
Affects melatonin synthesis
|
Kärkelä, J., Vakkuri, O., Kaukinen, S., Huang, W.Q. and Pasanen, M., 2002. The influence of anaesthesia and surgery on the circadian rhythm of melatonin. Acta Anaesthesiologica Scandinavica, 46(1), pp.30–36.
,
Christensen, K.C., Stadil, F., Malmström, J. and Rehfeld, J.F., 1978. The effect of beta-adrenergic and cholinergic blockade on the circadian rhythm of gastrins in serum. Scandinavian Journal of Gastroenterology, 13(3), pp.263–272.
|
|
CN1CCC23C4C1CC5=C2C(=C(C=C5)OC)OC3C(C=C4)O |
Approved |
|
Mu opioid receptor
|
opioid receptors binding
|
Young, A.M., Thompson, T., Jensen, M.A. and Muchow, L.R., 1979. Effects of response-contingent clock stimuli on behavior maintained by intravenous codeine in the rhesus monkey. Pharmacology Biochemistry and Behavior, 11(1), pp.43–49.
,
Warfield, A.E., Prather, J.F. and Todd, W.D., 2021. Systems and circuits linking chronic pain and circadian rhythms. Frontiers in Neuroscience, 15, p.705173.
|
|
CN1CCC23C4C1CC5=C2C(=C(C=C5)O)OC3C(C=C4)O |
Approved |
|
Mu opioid receptor
,
OPRK1
,
OPRD1
|
Unknown,
opioid receptors binding
|
Smyth, C., FitzGerald, R. and Waddington, J.L., 1995. Morphine phase-shifts circadian rhythms in mice: role of behavioural activation. Neuroreport, 7(1), pp.209–212.
|
|
CC(=O)OC1C=CC2C3CC4=C5C2(C1OC5=C(C=C4)OC(=O)C)CCN3C |
Not approved |
|
Mu opioid receptor
,
OPRK1
,
OPRD1
|
opioid receptors binding
|
Coffey, A.A., Guan, Z., Grigson, P.S. and Fang, J., 2016. Reversal of the sleep-wake cycle by heroin self-administration in rats. Brain Research Bulletin, 123, pp.33–46.
|
|
CC(CC1=CC=CC=C1)N |
Approved |
|
mPer2
,
mPer1
,
CLOCK-BMAL1
,
Arntl (gene)
|
Core clock modulation
|
Wongchitrat, P., Mukda, S., Phansuwan-Pujito, P. and Govitrapong, P., 2013. Effect of amphetamine on the clock gene expression in rat striatum. Neuroscience Letters, 542, pp.126–130.
,
Khazaie, H., Ahmadi, H.R., Kiani, A. and Ghadami, M.R., 2019. Circadian melatonin profile in opium and amphetamine dependent patients: A preliminary study. Neurobiology of Sleep and Circadian Rhythms, 7, p.100046.
|
|
C(OC(C(F)(F)F)C(F)(F)F)F |
Approved |
|
mPer2
,
mPer1
,
CRY1-PER2 complex
|
Core clock modulation,
Unknown
|
Kobayashi, K., Takemori, K. and Sakamoto, A., 2007. Circadian gene expression is suppressed during sevoflurane anesthesia and the suppression persists after awakening. Brain Research, 1185, pp.1–7.
,
Sugimura, S., Imai, R., Katoh, T., Makino, H., Hokamura, K., Kurita, T., Suzuki, Y., Aoki, Y., Kimura, T., Umemura, K. and Nakajima, Y., 2024. Effects of volatile anesthetics on circadian rhythm in mice: a comparative study of sevoflurane, desflurane, and isoflurane. Journal of Anesthesia, 38(1), pp.10–18.
|
|
C(C(F)(F)F)(OC(F)F)F |
Not approved |
|
CRY1-PER2 complex
|
Core clock modulation
|
Sugimura, S., Imai, R., Katoh, T., Makino, H., Hokamura, K., Kurita, T., Suzuki, Y., Aoki, Y., Kimura, T., Umemura, K. and Nakajima, Y., 2024. Effects of volatile anesthetics on circadian rhythm in mice: a comparative study of sevoflurane, desflurane, and isoflurane. Journal of Anesthesia, 38(1), pp.10–18.
,
Anzai, M., Iijima, N., Higo, S., Takumi, K., Matsuo, I., Mori, K., Ohe, Y., Kadota, K., Akimoto, T., Sakamoto, A. and Ozawa, H., 2013. Direct and specific effect of sevoflurane anesthesia on rat Per2 expression in the suprachiasmatic nucleus. PLoS One, 8(3), p.e59454.
|
|
C(C(F)(F)F)(OC(F)F)Cl |
Approved |
|
mPer2
,
mPer1
,
CRY1-PER2 complex
|
Core clock modulation,
Core clock suppression
|
Kobayashi, K., Takemori, K. and Sakamoto, A., 2007. Circadian gene expression is suppressed during sevoflurane anesthesia and the suppression persists after awakening. Brain Research, 1185, pp.1–7.
,
Wren-Dail, M.A., Dauchy, R.T., Blask, D.E., Hill, S.M., Ooms, T.G., Dupepe, L.M. and Bohm, R.P. Jr., 2017. Effect of Isoflurane Anesthesia on Circadian Metabolism and Physiology in Rats. Comparative Medicine, 67(2), pp.138–146.
|
|
CN1C2CCC1CC(C2)OC(=O)C(CO)C3=CC=CC=C3 |
Approved |
|
ADCY1
|
Adenylate cyclase binding activity affects circadian clock
|
Pérez-Llorca, M. and Müller, M., 2024. Unlocking nature’s rhythms: insights into secondary metabolite modulation by the circadian clock. International Journal of Molecular Sciences, 25(13), p.7308.
,
Nilsen, N.G., Gilson, S.J., Pedersen, H.R., Hagen, L.A., Wildsoet, C.F. and Baraas, R.C., 2024. The effect of topical 1% atropine on ocular dimensions and diurnal rhythms of the human eye. Vision Research, 214, p.108341.
|
|
C1CN(CC1O)CC2=CSC3=NC(=CN23)C4=CC=CC=C4NC(=O)C5=CC6=CC=CC=C6C=C5 |
Not approved |
RT2183, a SIRT1 activator, affects circadian rhythms by reducing the expression of circadian genes, achieved by decreasing the hidstone acetylation
|
CLOCK-BMAL1
,
SIRT1
|
SIRT1
|
Sultan, A., Ali, R., Sultan, T., Ali, S., Khan, N.J. and Parganiha, A., 2021. Circadian clock modulating small molecules repurposing as inhibitors of SARS-CoV-2 Mpro for pharmacological interventions in COVID-19 pandemic. Chronobiology International, 38(7), pp.971–985.
,
Bellet, M.M., Nakahata, Y., Boudjelal, M., Watts, E., Mossakowska, D.E., Edwards, K.A., Cervantes, M., Astarita, G., Loh, C., Ellis, J.L. and Vlasuk, G.P., 2013. Pharmacological modulation of circadian rhythms by synthetic activators of the deacetylase SIRT1. Proceedings of the National Academy of Sciences, 110(9), pp.3333-3338.
|
|
CC[C@@]1(C2=C(COC1=O)C(=O)N3CC4=CC5=CC=CC=C5N=C4C3=C2)O |
Not approved |
lengthening of the circadian period, as Bmal1 is involved in determining the length of the clock's oscillation.
|
CLOCK-BMAL1
|
Bmal1
|
Raju, U., Koumenis, C., Nunez-Regueiro, M. and Eskin, A., 1991. Alteration of the phase and period of a circadian oscillator by a reversible transcription inhibitor. Science, 253(5020), pp.673-675.
|
|
C1CN(CCN1)CC2=CSC3=NC(=CN23)C4=CC=CC=C4NC(=O)C5=NC6=CC=CC=C6N=C5.Cl |
Not approved |
Studies using SRT1720 have demonstrated that it can alter the expression of genes involved in the circadian clock.
|
CLOCK-BMAL1
,
SIRT1
|
Core clock modulation
|
Bellet, M.M., Nakahata, Y., Boudjelal, M., Watts, E., Mossakowska, D.E., Edwards, K.A., Cervantes, M., Astarita, G., Loh, C., Ellis, J.L., Vlasuk, G.P. and Sassone-Corsi, P., 2013. Pharmacological modulation of circadian rhythms by synthetic activators of the deacetylase SIRT1. Proceedings of the National Academy of Sciences of the United States of America, 110(9), pp.3333–3338.
,
Yao, H., Sundar, I.K., Huang, Y., Gerloff, J., Sellix, M.T., Sime, P.J. and Rahman, I., 2015. Disruption of sirtuin 1–mediated control of circadian molecular clock and inflammation in chronic obstructive pulmonary disease. American journal of respiratory cell and molecular biology, 53(6), pp.782-792.
|
|
CC1=NC=CC2=C1NC3=C2C=CC(=C3)OC |
Not approved |
lengthen the circadian period, meaning the time it takes for the clock to complete one cycle,
Specifically, it can increase the stability of PER2 protein, a key player in the molecular clock, and enhance the function of RORα, another protein in
|
CLOCK-BMAL1
,
RORα
|
Bmal1
|
Onishi, Y., Oishi, K., Kawano, Y. and Yamazaki, Y., 2012. The harmala alkaloid harmine is a modulator of circadian Bmal1 transcription. Bioscience Reports, 32(1), pp.45-52.
,
Kondoh, D., Yamamoto, S., Tomita, T., Miyazaki, K., Itoh, N., Yasumoto, Y., Oike, H., Doi, R. and Oishi, K., 2014. Harmine lengthens circadian period of the mammalian molecular clock in the suprachiasmatic nucleus. Biological and Pharmaceutical Bulletin, 37(8), pp.1422-1427.
|
|
CC(=O)N1CCN(CC1)CC2=CC=C(C=C2)C3=CC=C(C=C3)C(C(F)(F)F)(C(F)(F)F)O |
Not approved |
Suppresses TH17 cells and Stimulates T Regulatory Cells,
It reduces food intake, fat mass, and improves insulin sensitivity in obese diabetic mice, indicating potential as an anti-diabetic and anti-obesity
|
RORα
|
ROR
|
Xiang, K., Xu, Z., Hu, Y.Q., He, Y.S., Wu, G.C., Li, T.Y., Wang, X.R., Ding, L.H., Zhang, Q., Tao, S.S. and Ye, D.Q., 2021. Circadian clock genes as promising therapeutic targets for autoimmune diseases. Autoimmunity Reviews, 20(8), p.102866.
,
Chang, M.R., He, Y., Khan, T.M., Kuruvilla, D.S., Garcia-Ordonez, R., Corzo, C.A., Unger, T.J., White, D.W., Khan, S., Lin, L. and Cameron, M.D., 2015. Antiobesity effect of a small molecule repressor of RORγ. Molecular Pharmacology, 88(1), pp.48-56.
,
Solt, L.A., Kumar, N., He, Y., Kamenecka, T.M., Griffin, P.R. and Burris, T.P., 2012. Identification of a selective RORγ ligand that suppresses TH17 cells and stimulates T regulatory cells. ACS chemical biology, 7(9), pp.1515-1519.
|
|
CC1CC(CN(C1)C(=O)CC(C2=CC3=C(C=C2)OCO3)C4=C(C=C(C=C4OC)OC)O)C |
Not approved |
inhibited the transcriptional activity of RORγt
|
RORα
|
ROR
|
Huang, W., Wang, H., Johnson, R.L., Huang, R., Englund, E.E., Huh, J. and Littman, D.R., 2013. Identification of potent and selective RORγ antagonists. Probe Reports from the NIH Molecular Libraries Program [Internet].
|
|
C1CN(CCN1CC2=CC=C(C=C2)C3=C(C=C(C=C3)C(C(F)(F)F)(C(F)(F)F)O)F)CC4=CC=NC=C4 |
Not approved |
SR2211 acts as an inverse agonist of RORγ, meaning it blocks the activity of the receptor. This can have implications for circadian rhythms, as RORγ's
|
RORα
|
ROR
|
Kumar, N., Lyda, B., Chang, M.R., Lauer, J.L., Solt, L.A., Burris, T.P., Kamenecka, T.M. and Griffin, P.R., 2012. Identification of SR2211: a potent synthetic RORγ-selective modulator. ACS chemical biology, 7(4), pp.672-677.
|
|
CC1=C(SC(=N1)NC(=O)C)S(=O)(=O)NC2=CC=C(C=C2)C(C(F)(F)F)(C(F)(F)F)O |
Not approved |
resets the molecular circadian clock in eosinophils
|
RORα
|
ROR
|
Ribeiro, R.F., Cavadas, C. and Silva, M.M.C., 2021. Small-molecule modulators of the circadian clock: Pharmacological potentials in circadian-related diseases. Drug Discovery Today, 26(7), pp.1620-1641.
,
Teppan, J., Bärnthaler, T., Farzi, A., Durrington, H., Gioan-Tavernier, G., Platt, H., Wolf, P., Heinemann, A. and Böhm, E., 2025. The molecular circadian clock of eosinophils: A potential therapeutic target for asthma. American Journal of Physiology-Cell Physiology, 328(5), pp.C1394-C1408.
|
|
C1=CSC(=C1)S(=O)(=O)NC2=CC=C(C=C2)C(C(F)(F)F)(C(F)(F)F)O |
Not approved |
leading to a decrease in the expression of core clock genes, which are essential for maintaining circadian rhythms. This can affect various aspects of
|
RORα
|
ROR
|
Kumar, N., Kojetin, D.J., Solt, L.A., Kumar, K.G., Nuhant, P., Duckett, D.R., Cameron, M.D., Butler, A.A., Roush, W.R., Griffin, P.R. and Burris, T.P., 2011. Identification of SR3335 (ML-176): a synthetic RORα selective inverse agonist. ACS chemical biology, 6(3), pp.218-222.
|
|
TH301 |
Not approved |
|
CRY1-PER2 complex
|
Selectively stabilizes CRY2
|
Miller, S., Son, Y.L., Aikawa, Y., Makino, E., Nagai, Y., Srivastava, A., Oshima, T., Sugiyama, A., Hara, A., Abe, K. and Hirata, K., 2020. Isoform-selective regulation of mammalian cryptochromes. Nature chemical biology, 16(6), pp.676-685.
|
|
CC1=CC(=C(C=C1)N2C(=C3CSCC3=N2)NC(=O)C4=CC(=C(C=C4)C)C)C |
Not approved |
|
CRY1
|
Selective stabilizer of CRY1
|
Miller, S., Son, Y.L., Aikawa, Y., Makino, E., Nagai, Y., Srivastava, A., Oshima, T., Sugiyama, A., Hara, A., Abe, K. and Hirata, K., 2020. Isoform-selective regulation of mammalian cryptochromes. Nature chemical biology, 16(6), pp.676-685.
|
|
C1CCC2=C(C1)C3=C(N=CN=C3S2)NC(=O)C4=CC=CC=C4Br |
Not approved |
lengthen circadian rhtyhms
|
CRY1
|
Selective stabilizer of CRY1
|
Crane, B.R., 2020. Winding down: Selectively drugging a promiscuous pocket in cryptochrome slows circadian rhythms. Cell chemical biology, 27(9), pp.1109-1111.
|
|
CCS(=O)(=O)C1=CC=C(C=C1)CC(=O)NC2=CC(=C(C(=C2)Cl)C3=CC=CC=C3OC(F)(F)F)Cl |
Not approved |
Disrupts cellular circadian system
|
RORα
|
ROR
|
Borrmann, H., Ulkar, G., Kliszczak, A.E., Ismed, D., Schilling, M., Magri, A., Harris, J.M., Balfe, P., Vasudevan, S., Borrow, P. and Zhuang, X., 2023. Molecular components of the circadian clock regulate HIV-1 replication. Iscience, 26(7).
|
|
CC1CC(C(C(C=C(C(C(C=CC=C(C(=O)NC2=CC(=O)C=C(C1OC)C2=O)C)OC)OC(=O)N)C)C)OC)OC |
Approved |
|
CLOCK-BMAL1
|
Core clock modulation
|
Davis, M.A. and Carbott, D.E., 1999. Herbimycin A and geldanamycin inhibit okadaic acid-induced apoptosis and p38 activation in NRK-52E renal epithelial cells. Toxicology and applied pharmacology, 161(1), pp.59-74.
,
Zhang, Z., Xue, N., Bian, C., Yan, R., Jin, L., Chen, X. and Yu, X., 2016. C15-methoxyphenylated 18-deoxy-herbimycin A analogues, their in vitro anticancer activity and heat shock protein 90 binding affinity. Bioorganic & Medicinal Chemistry Letters, 26(17), pp.4287-4291.
|
|
CC1CC(C(C(C=C(C(C(C=CC=C(C(=O)NC2=CC(=O)C(=C(C1)C2=O)OC)C)OC)OC(=O)N)C)C)O)OC |
Not approved |
heat shock protein 90 binding affinity affectin circadian clock (indirect effects
|
CLOCK-BMAL1
|
HSP90 binding (in Arabidopsis)
|
Davis, M.A. and Carbott, D.E., 1999. Herbimycin A and geldanamycin inhibit okadaic acid-induced apoptosis and p38 activation in NRK-52E renal epithelial cells. Toxicology and applied pharmacology, 161(1), pp.59-74.
|