|
CC(=O)NCCC1=C(NC2=C1C=C(C=C2)OC)C3=CC=CC=C3 |
not approved |
MT1/MT2 receptor agonist; potential circadian phase modulation in mammals
|
Melatonin receptor
,
MT1
,
MT2
|
MT1 receptor binding,
MT2 receptor ligand,
Melatonin agonist
|
Radogna, F., Paternoster, L., De Nicola, M., Cerella, C., Ammendola, S., Bedini, A., Tarzia, G., Aquilano, K., Ciriolo, M. and Ghibelli, L., 2009. Rapid and transient stimulation of intracellular reactive oxygen species by melatonin in normal and tumor leukocytes. Toxicology and Applied Pharmacology, 239(1), pp.37–45.
,
Mor, M., Spadoni, G., Di Giacomo, B., Diamantini, G., Bedini, A., Tarzia, G., Plazzi, P.V., Rivara, S., Nonno, R., Lucini, V., Pannacci, M., Fraschini, F. and Stankov, B.M., 2001. Synthesis, pharmacological characterization and QSAR studies on 2-substituted indole melatonin receptor ligands. Bioorganic & Medicinal Chemistry, 9(4), pp.1045–1057.
|
|
CC(=O)NCCC1=CC=CC2=C1C=C(C=C2)OC.Cl |
approved |
restores normal circadian rhythms,
Resynchronization of the circadian clock, potentially improving sleep quality and alleviating symptoms associated with sleep disturbances.
|
Melatonin receptor
|
Melatonin receptor binding
|
Tchekalarova, J., Stoynova, T., Ilieva, K., Mitreva, R. and Atanasova, M., 2018. Agomelatine treatment corrects symptoms of depression and anxiety by restoring the disrupted melatonin circadian rhythms of rats exposed to chronic constant light. Pharmacology Biochemistry and Behavior, 171, pp.1–9.
,
Mairesse, J., Silletti, V., Laloux, C., Zuena, A.R., Giovine, A., Consolazione, M., van Camp, G., Malagodi, M., Gaetani, S., Cianci, S., Catalani, A., Mennuni, G., Mazzetta, A., van Reeth, O., Gabriel, C., Mocaër, E., Nicoletti, F., Morley-Fletcher, S. and Maccari, S., 2013. Chronic agomelatine treatment corrects the abnormalities in the circadian rhythm of motor activity and sleep/wake cycle induced by prenatal restraint stress in adult rats. International Journal of Neuropsychopharmacology, 16
|
|
CC(=O)NCCC1=CNC2=CC=CC=C21 |
Not approved |
Partial MT2 receptor agonist; modulates circadian signaling in retina (mammals)
|
Melatonin receptor
,
MT1
|
Melatonin receptor binding,
MT1 receptor binding
|
Backlund, P.S., Urbanski, H.F., Doll, M.A., Hein, D.W., Bozinoski, M., Mason, C.E., Coon, S.L. and Klein, D.C., 2017. Daily rhythm in plasma N-acetyltryptamine. Journal of Biological Rhythms, 32(3), pp.195–211.
,
Pohanka, M., 2022. New uses of melatonin as a drug: a review. Current Medicinal Chemistry, 29(20), pp.3622–3637.
|
|
CC(=O)NCCC1=C2C=C(C=CC2=CC(=C1)O)O |
None |
Weak MT1/MT2 agonist
|
MT1
,
MT2
|
Melatonin receptor binding,
MT1 receptor binding,
MT2 receptor ligand
|
Bogaards, J.J., Hissink, E.M., Briggs, M., Weaver, R., Jochemsen, R., Jackson, P., Bertrand, M. and van Bladeren, P.J., 2000. Prediction of interindividual variation in drug plasma levels in vivo from individual enzyme kinetic data and physiologically based pharmacokinetic modeling. European Journal of Pharmaceutical Sciences, 12(2), pp.117–124.
|
|
[2H]C([2H])(C1=CC=CC2=C1C=C(C=C2)OC)C([2H])([2H])NC(=O)C |
Not approved |
derivative of chronobiotic agomelatine (MT1/MT2)
|
Melatonin receptor
|
Melatonin receptor binding
|
De Berardis, D., Marini, S., Fornaro, M., Srinivasan, V., Iasevoli, F., Tomasetti, C., Valchera, A., Perna, G., Quera-Salva, M.A., Martinotti, G. and Di Giannantonio, M., 2013. The melatonergic system in mood and anxiety disorders and the role of agomelatine: implications for clinical practice. International Journal of Molecular Sciences, 14(6), pp.12458–12483.
|
|
[2H]C([2H])([2H])C(NC([2H])([2H])C([2H])([2H])C(C1=C2)=CNC1=CC=C2OC)=O |
not approved |
MT1/MT2 receptor agonist
|
MT1
,
MT2
|
Melatonin receptor binding,
MT1 receptor binding,
MT2 receptor ligand
|
Fourtillan, J.B., Brisson, A.M., Gobin, P., Ingrand, I., Decourt, J.P. and Girault, J., 2000. Bioavailability of melatonin in humans after day-time administration of D(7) melatonin. Biopharmaceutics & Drug Disposition, 21(1), pp.15–22.
|
|
[2H]C([2H])([2H])C([2H])([2H])C(=O)NCC[C@@H]1CCC2=C1C3=C(C=C2)OCC3 |
Approved |
MT1/MT2 receptor agonist
|
Melatonin receptor
|
Melatonin receptor binding
|
McGechan, A. and Wellington, K., 2005. Ramelteon. CNS Drugs, 19(12), pp.1057–1065; discussion 1066–1067.
|
|
CCCCC(=O)NCCC1=C(NC2=CC=CC=C21)CC3=CC=CC=C3 |
Not approved |
MT2 antagonist; disrupts melatonin signaling (in human receptor models)
|
Melatonin receptor
|
Melatonin receptor binding
|
Behrens, U.D., Douglas, R.H., Sugden, D., Davies, D.J. and Wagner, H.J., 2000. Effect of melatonin agonists and antagonists on horizontal cell spinule formation and dopamine release in a fish retina. Cell and Tissue Research, 299(3), pp.299–306.
|
|
CC(=O)NCCN1CCC2=C1C3=C(C=C2)OCC3 |
Not approved |
Sleep-promoting and circadian phase-altering effects in mice
|
Melatonin receptor
,
MT1
|
MT1 receptor binding
|
Beresford, I.J., Harvey, F.J., Hall, D.A. and Giles, H., 1998. Pharmacological characterisation of melatonin MT1 receptor-mediated stimulation of [³⁵S]-GTPγS binding. Biochemical Pharmacology, 56(9), pp.1167–1174.
,
Fratter, A., 2013. Nanoemulsion technology for sublingual delivery of melatonin: characterization and preliminary data on a new administration system. In: New Developments in Melatonin Research. Nova Science Publishers, New York. ISBN: 978-1-62618-880-8.
|
|
[2H]C([2H])([2H])CC(=O)NCC[C@@H]1CCC2=C1C3=C(C=C2)OCC3 |
Approved |
|
Melatonin receptor
|
Melatonin receptor binding
|
Miyamoto, M., 2009. Pharmacology of ramelteon, a selective MT1/MT2 receptor agonist: a novel therapeutic drug for sleep disorders. CNS Neuroscience & Therapeutics, 15(1), pp.32–51.
|
|
CC(=O)NCCC1=CNC2=CC(=C(C=C21)OC)Cl |
Not approved |
|
Melatonin receptor
|
Melatonin receptor binding
|
Kumari, Y., Choo, B.K.M., Shaikh, M.F. and Othman, I., 2019. Melatonin receptor agonist Piper betle L. ameliorates dexamethasone-induced early life stress in adult zebrafish. Experimental and Therapeutic Medicine, 18(2), pp.1095–1102.
|
|
[2H]C([2H])([2H])C([2H])([2H])C(=O)NC[C@@H]1C[C@H]1C2=C3CCOC3=CC=C2 |
not approved |
|
Melatonin receptor
|
Melatonin receptor binding
|
Russak, E.M. and Bednarczyk, E.M., 2019. Impact of deuterium substitution on the pharmacokinetics of pharmaceuticals. Annals of Pharmacotherapy, 53(2), pp.211–216
,
Lavedan, C., Forsberg, M. and Gentile, A.J., 2015. Tasimelteon: a selective and unique receptor binding profile. Neuropharmacology, 91, pp.142–147
|
|
CC(=O)NCCC1=C(OC2=C1C=C(C=C2)OC)CC3=CC(=CC=C3)OC |
Not approved |
UNKNOWN
|
Melatonin receptor
|
Melatonin receptor binding
|
Jockers, R., Delagrange, P., Dubocovich, M.L., Markus, R.P., Renault, N., Tosini, G., Cecon, E. and Zlotos, D.P., 2016. Update on melatonin receptors: IUPHAR Review 20. British Journal of Pharmacology, 173(18), pp.2702–2725.
,
Boutin, J.A., Witt-Enderby, P.A., Sotriffer, C. and Zlotos, D.P., 2020. Melatonin receptor ligands: a pharmaco-chemical perspective. Journal of Pineal Research, 69(2), p.e12672.
,
Williams III, W.P., McLin III, D.E., Dressman, M.A. and Neubauer, D.N., 2016. Comparative review of approved melatonin agonists for the treatment of circadian rhythm sleep‐wake disorders. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 36(9), pp.1028-1041.
|
|
CCCCCC1=CC(=C(C(=C1)O)CC=C(C)CCC=C(C)C)O |
Not approved |
|
Cannabinoid receptor
|
Core clock modulation,
Unknown
|
Pertwee, R.G. (Ed.), 2014. Handbook of Cannabis. Oxford University Press, USA.
|
|
CCCCCC1=CC(=C2C3C=C(CCC3C(OC2=C1)(C)C)C)O |
Not approved |
|
Cannabinoid receptor
|
Core clock modulation
|
Kaul, M., Zee, P.C. and Sahni, A.S., 2021. Effects of cannabinoids on sleep and their therapeutic potential for sleep disorders. Neurotherapeutics, 18(1), pp.217–227.
|
|
CCCCCC1=CC(=C(C(=C1)O)C2C=C(CCC2C(=C)C)C)O |
Not approved |
|
RORA
,
NR1D1
,
RORB
|
Disruption of circadian clock,
Core clock modulation
|
Lafaye, G., Desterke, C., Marulaz, L. and Benyamina, A., 2019. Cannabidiol affects circadian clock core complex and its regulation in microglia cells. Addiction Biology, 24(5), pp.921–934.
,
Koch, M., Dehghani, F., Habazettl, I., Schomerus, C. and Korf, H.W., 2006. Cannabinoids attenuate norepinephrine-induced melatonin biosynthesis in the rat pineal gland by reducing arylalkylamine N-acetyltransferase activity without involvement of cannabinoid receptors. Journal of Neurochemistry, 98(1), pp.267–278.
|
|
CCCCCC1=CC(=C2C=CC(OC2=C1)(C)CCC=C(C)C)O |
Not approved |
non-psychoactive cannabinoid, can influence circadian rhythms through its interaction with the endocannabinoid system (ECS) and potentially by modulat
|
Cannabinoid receptor
|
Unknown
|
Hodges, E.L. and Ashpole, N.M., 2019. Aging circadian rhythms and cannabinoids. Neurobiology of aging, 79, pp.110-118.
|
|
CN1CCC23C4C(=O)CCC2(C1CC5=C3C(=C(C=C5)O)O4)O |
Approved |
|
Mu opioid receptor
,
OPRK1
,
OPRD1
|
Unknown,
Kappa opioid receptor binding,
delta opioid receptor binding
|
|
|
Hydrocodone |
Approved |
|
Mu opioid receptor
,
OPRK1
,
OPRD1
|
Mu opioid receptor binding,
Kappa opioid receptor binding,
delta opioid receptor binding
|
|
|
CCCCCC1=CC(=C(C(=C1)O)C2=C(C=CC(=C2)C)C(=C)C)O |
Not approved |
|
Cannabinoid receptor
,
CB2
|
Disruption of circadian clock,
Core clock modulation,
Unknown,
Cannabinoid receptor stimulation
|
Lafaye G, Desterke C, Marulaz L, Benyamina A. Cannabidiol affects circadian clock core complex and its regulation in microglia cells. Addiction Biology. 2018.
|
|
CCCCCC1=CC(=C(C(=C1)O)C2C=C(CCC2C(=C)C)C)O.CCCCCC1=CC(=C2C3C=C(CCC3C(OC2=C1)(C)C)C)O |
Not approved |
|
Cannabinoid receptor
,
CB2
|
Disruption of circadian clock,
Core clock modulation,
Unknown,
Cannabinoid receptor stimulation
|
Outen, J.D., Burhanullah, M.H., Vandrey, R., Amjad, H., Harper, D.G., Patrick, R.E., May, R.L., Agronin, M.E., Forester, B.P. and Rosenberg, P.B., 2021. Cannabinoids for agitation in Alzheimer's disease. American Journal of Geriatric Psychiatry, 29(12), pp.1253–1263
|
|
CN1CCC23C4C1CC5=C2C(=C(C=C5)O)OC3C(=O)CC4 |
Approved |
|
Mu opioid receptor
,
OPRK1
,
OPRD1
|
Mu opioid receptor binding,
Kappa opioid receptor binding,
delta opioid receptor binding
|
Shin, S.H., Lee, H.S., Kim, Y.S., Choi, Y.J., Kim, S.H., Kwon, H.C., Oh, S.Y., Kang, J.H., Sohn, C.H., Lee, S.M., Baek, J.H., Min, Y.J., Kim, C. and Chung, J.S., 2014. Clinical usefulness of hydromorphone-OROS in improving sleep disturbances in Korean cancer patients: a multicenter, prospective, open-label study. Cancer Research and Treatment, 46(4), pp.331–338.
|
|
CC1=CC(=CC(=C1)NC(=O)[C@@H]2CCCN2S(=O)(=O)C3=CC=C(C=C3)OC |
Not approved. |
|
orexin receptor subtypes (OX1 and OX2)
|
Orexin Receptor Blockade
|
Boss, C., Roch-Brisbare, C., Steiner, M.A., Treiber, A., Dietrich, H., Jenck, F., von Raumer, M., Sifferlen, T., Brotschi, C., Heidmann, B., Williams, J.T., Aissaoui, H., Siegrist, R. and Gatfield, J., 2014. Structure-activity relationship, biological, and pharmacological characterization of the proline sulfonamide ACT-462206: a potent, brain-penetrant dual orexin 1/orexin 2 receptor antagonist. ChemMedChem, 9(11), pp.2486–2496.
|
|
CCC(=O)C(CC(C)N(C)C)(C1=CC=CC=C1)C2=CC=CC=C2 |
Approved |
|
Mu opioid receptor
,
OPRK1
,
OPRD1
,
NMDA receptor
,
iGluRs
|
Mu opioid receptor binding,
Kappa opioid receptor binding,
delta opioid receptor binding,
opioid receptors binding
|
Pačesová, D., Novotný, J. and Bendová, Z., 2016. The effect of chronic morphine or methadone exposure and withdrawal on clock gene expression in the rat suprachiasmatic nucleus and AA-NAT activity in the pineal gland. Physiological Research, 65(3), pp.517–525.
,
Pačesová, D., Spišská, V., Novotný, J. and Bendová, Z., 2023. Methadone administered to rat dams during pregnancy and lactation affects the circadian rhythms of their pups. Journal of Neuroscience Research, 101(11), pp.1737–1756.
|
|
CN(C)CC1CCCCC1(C2=CC(=CC=C2)OC)O |
Approved |
|
Mu opioid receptor
,
OPRK1
,
OPRD1
|
Mu opioid receptor binding,
Kappa opioid receptor binding,
delta opioid receptor binding,
opioid receptors binding
|
Hakami, A.Y., Alghamdi, B.S. and Alshehri, F.S., 2024. Exploring the potential use of melatonin as a modulator of tramadol-induced rewarding effects in rats. Frontiers in Pharmacology, 15, p.1373746.
,
Liu, X.P. and Song, J.G., 2001. [Chronopharmacology of tramadol in mice]. Yao Xue Xue Bao (Acta Pharmaceutica Sinica), 36(8), pp.561–564.
|