|
CCCCC(=O)NCCC1=C(NC2=CC=CC=C21)CC3=CC=CC=C3 |
Not approved |
MT2 antagonist; disrupts melatonin signaling (in human receptor models)
|
Melatonin receptor
|
Melatonin receptor binding
|
Behrens, U.D., Douglas, R.H., Sugden, D., Davies, D.J. and Wagner, H.J., 2000. Effect of melatonin agonists and antagonists on horizontal cell spinule formation and dopamine release in a fish retina. Cell and Tissue Research, 299(3), pp.299–306.
|
|
CC(=O)NCCN1CCC2=C1C3=C(C=C2)OCC3 |
Not approved |
Sleep-promoting and circadian phase-altering effects in mice
|
Melatonin receptor
,
MT1
|
MT1 receptor binding
|
Beresford, I.J., Harvey, F.J., Hall, D.A. and Giles, H., 1998. Pharmacological characterisation of melatonin MT1 receptor-mediated stimulation of [³⁵S]-GTPγS binding. Biochemical Pharmacology, 56(9), pp.1167–1174.
,
Fratter, A., 2013. Nanoemulsion technology for sublingual delivery of melatonin: characterization and preliminary data on a new administration system. In: New Developments in Melatonin Research. Nova Science Publishers, New York. ISBN: 978-1-62618-880-8.
|
|
[2H]C([2H])([2H])CC(=O)NCC[C@@H]1CCC2=C1C3=C(C=C2)OCC3 |
Approved |
|
Melatonin receptor
|
Melatonin receptor binding
|
Miyamoto, M., 2009. Pharmacology of ramelteon, a selective MT1/MT2 receptor agonist: a novel therapeutic drug for sleep disorders. CNS Neuroscience & Therapeutics, 15(1), pp.32–51.
|
|
CC(=O)NCCC1=CNC2=CC(=C(C=C21)OC)Cl |
Not approved |
|
Melatonin receptor
|
Melatonin receptor binding
|
Kumari, Y., Choo, B.K.M., Shaikh, M.F. and Othman, I., 2019. Melatonin receptor agonist Piper betle L. ameliorates dexamethasone-induced early life stress in adult zebrafish. Experimental and Therapeutic Medicine, 18(2), pp.1095–1102.
|
|
[2H]C([2H])([2H])C([2H])([2H])C(=O)NC[C@@H]1C[C@H]1C2=C3CCOC3=CC=C2 |
not approved |
|
Melatonin receptor
|
Melatonin receptor binding
|
Russak, E.M. and Bednarczyk, E.M., 2019. Impact of deuterium substitution on the pharmacokinetics of pharmaceuticals. Annals of Pharmacotherapy, 53(2), pp.211–216
,
Lavedan, C., Forsberg, M. and Gentile, A.J., 2015. Tasimelteon: a selective and unique receptor binding profile. Neuropharmacology, 91, pp.142–147
|
|
CC(=O)NCCC1=C(OC2=C1C=C(C=C2)OC)CC3=CC(=CC=C3)OC |
Not approved |
UNKNOWN
|
Melatonin receptor
|
Melatonin receptor binding
|
Jockers, R., Delagrange, P., Dubocovich, M.L., Markus, R.P., Renault, N., Tosini, G., Cecon, E. and Zlotos, D.P., 2016. Update on melatonin receptors: IUPHAR Review 20. British Journal of Pharmacology, 173(18), pp.2702–2725.
,
Boutin, J.A., Witt-Enderby, P.A., Sotriffer, C. and Zlotos, D.P., 2020. Melatonin receptor ligands: a pharmaco-chemical perspective. Journal of Pineal Research, 69(2), p.e12672.
,
Williams III, W.P., McLin III, D.E., Dressman, M.A. and Neubauer, D.N., 2016. Comparative review of approved melatonin agonists for the treatment of circadian rhythm sleep‐wake disorders. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 36(9), pp.1028-1041.
|
|
CCCCCC1=CC(=C(C(=C1)O)CC=C(C)CCC=C(C)C)O |
Not approved |
|
Cannabinoid receptor
|
Core clock modulation,
Unknown
|
Pertwee, R.G. (Ed.), 2014. Handbook of Cannabis. Oxford University Press, USA.
|
|
CCCCCC1=CC(=C2C3C=C(CCC3C(OC2=C1)(C)C)C)O |
Not approved |
|
Cannabinoid receptor
|
Core clock modulation
|
Kaul, M., Zee, P.C. and Sahni, A.S., 2021. Effects of cannabinoids on sleep and their therapeutic potential for sleep disorders. Neurotherapeutics, 18(1), pp.217–227.
|
|
CCCCCC1=CC(=C(C(=C1)O)C2C=C(CCC2C(=C)C)C)O |
Not approved |
|
RORA
,
NR1D1
,
RORB
|
Disruption of circadian clock,
Core clock modulation
|
Lafaye, G., Desterke, C., Marulaz, L. and Benyamina, A., 2019. Cannabidiol affects circadian clock core complex and its regulation in microglia cells. Addiction Biology, 24(5), pp.921–934.
,
Koch, M., Dehghani, F., Habazettl, I., Schomerus, C. and Korf, H.W., 2006. Cannabinoids attenuate norepinephrine-induced melatonin biosynthesis in the rat pineal gland by reducing arylalkylamine N-acetyltransferase activity without involvement of cannabinoid receptors. Journal of Neurochemistry, 98(1), pp.267–278.
|
|
CCCCCC1=CC(=C2C=CC(OC2=C1)(C)CCC=C(C)C)O |
Not approved |
non-psychoactive cannabinoid, can influence circadian rhythms through its interaction with the endocannabinoid system (ECS) and potentially by modulat
|
Cannabinoid receptor
|
Unknown
|
Hodges, E.L. and Ashpole, N.M., 2019. Aging circadian rhythms and cannabinoids. Neurobiology of aging, 79, pp.110-118.
|
|
CN1CCC23C4C(=O)CCC2(C1CC5=C3C(=C(C=C5)O)O4)O |
Approved |
|
Mu opioid receptor
,
OPRK1
,
OPRD1
|
Unknown,
Kappa opioid receptor binding,
delta opioid receptor binding
|
|
|
Hydrocodone |
Approved |
|
Mu opioid receptor
,
OPRK1
,
OPRD1
|
Mu opioid receptor binding,
Kappa opioid receptor binding,
delta opioid receptor binding
|
|
|
CCCCCC1=CC(=C(C(=C1)O)C2=C(C=CC(=C2)C)C(=C)C)O |
Not approved |
|
Cannabinoid receptor
,
CB2
|
Disruption of circadian clock,
Core clock modulation,
Unknown,
Cannabinoid receptor stimulation
|
Lafaye G, Desterke C, Marulaz L, Benyamina A. Cannabidiol affects circadian clock core complex and its regulation in microglia cells. Addiction Biology. 2018.
|
|
CCCCCC1=CC(=C(C(=C1)O)C2C=C(CCC2C(=C)C)C)O.CCCCCC1=CC(=C2C3C=C(CCC3C(OC2=C1)(C)C)C)O |
Not approved |
|
Cannabinoid receptor
,
CB2
|
Disruption of circadian clock,
Core clock modulation,
Unknown,
Cannabinoid receptor stimulation
|
Outen, J.D., Burhanullah, M.H., Vandrey, R., Amjad, H., Harper, D.G., Patrick, R.E., May, R.L., Agronin, M.E., Forester, B.P. and Rosenberg, P.B., 2021. Cannabinoids for agitation in Alzheimer's disease. American Journal of Geriatric Psychiatry, 29(12), pp.1253–1263
|
|
CN1CCC23C4C1CC5=C2C(=C(C=C5)O)OC3C(=O)CC4 |
Approved |
|
Mu opioid receptor
,
OPRK1
,
OPRD1
|
Mu opioid receptor binding,
Kappa opioid receptor binding,
delta opioid receptor binding
|
Shin, S.H., Lee, H.S., Kim, Y.S., Choi, Y.J., Kim, S.H., Kwon, H.C., Oh, S.Y., Kang, J.H., Sohn, C.H., Lee, S.M., Baek, J.H., Min, Y.J., Kim, C. and Chung, J.S., 2014. Clinical usefulness of hydromorphone-OROS in improving sleep disturbances in Korean cancer patients: a multicenter, prospective, open-label study. Cancer Research and Treatment, 46(4), pp.331–338.
|
|
CC1=CC(=CC(=C1)NC(=O)[C@@H]2CCCN2S(=O)(=O)C3=CC=C(C=C3)OC |
Not approved. |
|
orexin receptor subtypes (OX1 and OX2)
|
Orexin Receptor Blockade
|
Boss, C., Roch-Brisbare, C., Steiner, M.A., Treiber, A., Dietrich, H., Jenck, F., von Raumer, M., Sifferlen, T., Brotschi, C., Heidmann, B., Williams, J.T., Aissaoui, H., Siegrist, R. and Gatfield, J., 2014. Structure-activity relationship, biological, and pharmacological characterization of the proline sulfonamide ACT-462206: a potent, brain-penetrant dual orexin 1/orexin 2 receptor antagonist. ChemMedChem, 9(11), pp.2486–2496.
|
|
CCC(=O)C(CC(C)N(C)C)(C1=CC=CC=C1)C2=CC=CC=C2 |
Approved |
|
Mu opioid receptor
,
OPRK1
,
OPRD1
,
NMDA receptor
,
iGluRs
|
Mu opioid receptor binding,
Kappa opioid receptor binding,
delta opioid receptor binding,
opioid receptors binding
|
Pačesová, D., Novotný, J. and Bendová, Z., 2016. The effect of chronic morphine or methadone exposure and withdrawal on clock gene expression in the rat suprachiasmatic nucleus and AA-NAT activity in the pineal gland. Physiological Research, 65(3), pp.517–525.
,
Pačesová, D., Spišská, V., Novotný, J. and Bendová, Z., 2023. Methadone administered to rat dams during pregnancy and lactation affects the circadian rhythms of their pups. Journal of Neuroscience Research, 101(11), pp.1737–1756.
|
|
CN(C)CC1CCCCC1(C2=CC(=CC=C2)OC)O |
Approved |
|
Mu opioid receptor
,
OPRK1
,
OPRD1
|
Mu opioid receptor binding,
Kappa opioid receptor binding,
delta opioid receptor binding,
opioid receptors binding
|
Hakami, A.Y., Alghamdi, B.S. and Alshehri, F.S., 2024. Exploring the potential use of melatonin as a modulator of tramadol-induced rewarding effects in rats. Frontiers in Pharmacology, 15, p.1373746.
,
Liu, X.P. and Song, J.G., 2001. [Chronopharmacology of tramadol in mice]. Yao Xue Xue Bao (Acta Pharmaceutica Sinica), 36(8), pp.561–564.
|
|
CC(C)(C)C(C)(C1CC23CCC1(C4C25CCN(C3CC6=C5C(=C(C=C6)O)O4)CC7CC7)OC)O |
Approved |
|
Mu opioid receptor
,
OPRK1
,
OPRD1
|
opioid receptors binding
|
Pjrek, E., Frey, R., Naderi-Heiden, A., Strnad, A., Kowarik, A., Kasper, S. and Winkler, D., 2012. Actigraphic measurements in opioid detoxification with methadone or buprenorphine. Journal of Clinical Psychopharmacology, 32(1), pp.75–82
,
Gauthier, E.A., Guzick, S.E., Brummett, C.M., Baghdoyan, H.A. and Lydic, R., 2011. Buprenorphine disrupts sleep and decreases adenosine concentrations in sleep-regulating brain regions of Sprague Dawley rat. Anesthesiology, 115(4), pp.743–753.
|
|
C[N+]1(CCC(C1)OC(=O)C(C2CCCC2)(C3=CC=CC=C3)O)C.[Br-] |
Approved |
|
Muscarinic acetilcholine receptror M1
|
Affects melatonin synthesis
|
Kärkelä, J., Vakkuri, O., Kaukinen, S., Huang, W.Q. and Pasanen, M., 2002. The influence of anaesthesia and surgery on the circadian rhythm of melatonin. Acta Anaesthesiologica Scandinavica, 46(1), pp.30–36.
,
Christensen, K.C., Stadil, F., Malmström, J. and Rehfeld, J.F., 1978. The effect of beta-adrenergic and cholinergic blockade on the circadian rhythm of gastrins in serum. Scandinavian Journal of Gastroenterology, 13(3), pp.263–272.
|
|
CN1CCC23C4C1CC5=C2C(=C(C=C5)OC)OC3C(C=C4)O |
Approved |
|
Mu opioid receptor
|
opioid receptors binding
|
Young, A.M., Thompson, T., Jensen, M.A. and Muchow, L.R., 1979. Effects of response-contingent clock stimuli on behavior maintained by intravenous codeine in the rhesus monkey. Pharmacology Biochemistry and Behavior, 11(1), pp.43–49.
,
Warfield, A.E., Prather, J.F. and Todd, W.D., 2021. Systems and circuits linking chronic pain and circadian rhythms. Frontiers in Neuroscience, 15, p.705173.
|
|
CN1CCC23C4C1CC5=C2C(=C(C=C5)O)OC3C(C=C4)O |
Approved |
|
Mu opioid receptor
,
OPRK1
,
OPRD1
|
Unknown,
opioid receptors binding
|
Smyth, C., FitzGerald, R. and Waddington, J.L., 1995. Morphine phase-shifts circadian rhythms in mice: role of behavioural activation. Neuroreport, 7(1), pp.209–212.
|
|
CC(=O)OC1C=CC2C3CC4=C5C2(C1OC5=C(C=C4)OC(=O)C)CCN3C |
Not approved |
|
Mu opioid receptor
,
OPRK1
,
OPRD1
|
opioid receptors binding
|
Coffey, A.A., Guan, Z., Grigson, P.S. and Fang, J., 2016. Reversal of the sleep-wake cycle by heroin self-administration in rats. Brain Research Bulletin, 123, pp.33–46.
|
|
CC(CC1=CC=CC=C1)N |
Approved |
|
mPer2
,
mPer1
,
CLOCK-BMAL1
,
Arntl (gene)
|
Core clock modulation
|
Wongchitrat, P., Mukda, S., Phansuwan-Pujito, P. and Govitrapong, P., 2013. Effect of amphetamine on the clock gene expression in rat striatum. Neuroscience Letters, 542, pp.126–130.
,
Khazaie, H., Ahmadi, H.R., Kiani, A. and Ghadami, M.R., 2019. Circadian melatonin profile in opium and amphetamine dependent patients: A preliminary study. Neurobiology of Sleep and Circadian Rhythms, 7, p.100046.
|
|
C(OC(C(F)(F)F)C(F)(F)F)F |
Approved |
|
mPer2
,
mPer1
,
CRY1-PER2 complex
|
Core clock modulation,
Unknown
|
Kobayashi, K., Takemori, K. and Sakamoto, A., 2007. Circadian gene expression is suppressed during sevoflurane anesthesia and the suppression persists after awakening. Brain Research, 1185, pp.1–7.
,
Sugimura, S., Imai, R., Katoh, T., Makino, H., Hokamura, K., Kurita, T., Suzuki, Y., Aoki, Y., Kimura, T., Umemura, K. and Nakajima, Y., 2024. Effects of volatile anesthetics on circadian rhythm in mice: a comparative study of sevoflurane, desflurane, and isoflurane. Journal of Anesthesia, 38(1), pp.10–18.
|