|
CC(=O)C1CCC2C1(CCC3C2CCC4=CC(=O)CCC34C)C |
Approved |
Progesterone regulates the expression of clock genes like PER1, which is crucial for circadian timing.
|
CLOCK-BMAL1
,
Arntl (gene)
,
BMAL1 expression (induction)
,
Progesterone receptor
,
Estrogen receptor alpha
|
Bmal1,
BMAL1 expression modulation,
BMAL1 expression modulation,
Progesterone receptor, Estrogen receptor alpha, Mineralocorticoid receptor, Steroid 17-alpha-hydroxylase/17,20 lyase Kappa-typ
|
Tamai, T.K., Nakane, Y., Ota, W., Kobayashi, A., Ishiguro, M., Kadofusa, N., Ikegami, K., Yagita, K., Shigeyoshi, Y., Sudo, M. and Nishiwaki‐Ohkawa, T., 2018. Identification of circadian clock modulators from existing drugs. EMBO molecular medicine, 10(5), p.e8724.
|
|
CN1C=NC2=C1C(=O)N(C(=O)N2C)C |
Approved as food (400 mg per day) |
delaying melatonin secretion, particularly when consumed in the evening, and potentially disrupting sleep patterns. It can shift the CCGs rhtyhms
|
Adenosine A1, A2A, A2B, and A3 Receptors
|
Activation of Adenosine Receptors,
Adenosine Monophosphate-Activated Protein Kinase (AMPK),
adenosine receptor binding
|
Burke, T.M., Markwald, R.R., McHill, A.W., Chinoy, E.D., Snider, J.A., Bessman, S.C., Jung, C.M., O’Neill, J.S. and Wright Jr, K.P., 2015. Effects of caffeine on the human circadian clock in vivo and in vitro. Science translational medicine, 7(305), pp.305ra146-305ra146.
|
|
CC(C)/C=C/CCCCC(=O)NCC1=CC(=C(C=C1)O)OC |
Approved |
restores normal circadian rhythms
|
TRPV1
|
TRPV1 capsaicin site binding
|
Liu, L. and Tian, Y., 2023. Capsaicin changes the pattern of brain rhythms in sleeping rats. Molecules, 28(12), p.4736.
|
|
C[C@@H](CC1=CC=CC=C1)NC |
Approved |
Ultradian oscillations induction in Per1/2/3knockout mice,
exposure induces atime-varying circadian rhythm,
induced a very long free-running period (~27 h) in heterozygous Gsk3β mutant mice in DD
|
SLC6A2
|
methamphetamine-sensitive circadian oscillator (MASCO),
Monoamine transporter inhibitor,
increase dopamine signalling,
Non-canonical circadian genes
|
Barnes, S.J., Alanazi, M., Yamazaki, S. and Stefanovska, A., 2025. Methamphetamine alters the circadian oscillator and its couplings on multiple scales in Per1/2/3 knockout mice. PNAS nexus, 4(4), p.pgaf070.
,
Mohawk, J.A., Baer, M.L. and Menaker, M., 2009. The methamphetamine-sensitive circadian oscillator does not employ canonical clock genes. Proceedings of the National Academy of Sciences, 106(9), pp.3519-3524.
,
Genetics and functional significance of the understudied methamphetamine sensitive circadian oscillator (MASCO)
|
|
CCC1=NN(C(=O)N1CCOC2=CC=CC=C2)CCCN3CCN(CC3)C4=CC(=CC=C4)Cl.Cl |
Approved |
Nefazodone decreased both sleep latency and stage 1 sleep and increased sleep efficiency.
|
CLOCK-BMAL1
,
Arntl (gene)
,
BMAL1 expression (induction)
|
de-repressing BMAL1,
BMAL1 expression modulation,
BMAL1 expression modulation
|
Tamai, T.K., Nakane, Y., Ota, W., Kobayashi, A., Ishiguro, M., Kadofusa, N., Ikegami, K., Yagita, K., Shigeyoshi, Y., Sudo, M. and Nishiwaki‐Ohkawa, T., 2018. Identification of circadian clock modulators from existing drugs. EMBO molecular medicine, 10(5), p.e8724.
|
|
CC(CNC(=O)C)C1=CNC2=CC(=C(C=C21)OC)Cl |
Not approved |
efficacy in readjusting phase shifts in all physiological systems. Reduces sleep latancy.
|
Melatonin receptor
,
MT1
,
MT2
|
Melatonin receptor binding,
MT1 receptor binding,
MT2 receptor ligand
|
Hardeland, R., 2016. Melatonin and synthetic melatoninergic agonists in psychiatric and age-associated disorders: successful and unsuccessful approaches. Current Pharmaceutical Design, 22(8), pp.1086–1101.
,
Szabadi, E., 2015. Neuronal networks regulating sleep and arousal: effect of drugs. In: Guglietta, A. (ed.) Drug Treatment of Sleep Disorders. Milestones in Drug Therapy. Springer, Cham, pp.25–70.
|
|
COC1=CC(=C(C=C1Cl)S(=O)(=O)N2CCCCC2)Cl |
Not approved |
AA41612 alters the body's response to light, potentially influencing the timing and duration of circadian rhythms, such as sleep-wake cycles,
|
Melanopsin (Opn4)
|
Photoreception inhibition,
Competitive binding at melanopsin’s retinal-binding site
|
Jones, K.A., Hatori, M., Mure, L.S., Bramley, J.R., Artymyshyn, R., Hong, S.P., Marzabadi, M., Zhong, H., Sprouse, J., Zhu, Q. and Hartwick, A.T., 2013. Small-molecule antagonists of melanopsin-mediated phototransduction. Nature chemical biology, 9(10), pp.630-635.
|
|
COC1=C(C(=CC=C1)OCCCN)C2=CC(=NN2)NC3=NC=C(N=C3)C#N |
Approved |
|
CKI delta
|
CHK1 inhibitor crosstalk with caseine kinase 1,
CK1 Inhibition,
Chk1/2 inhibition,
PER2 phosphorylation
|
Collis SJ, Boulton SJ. Emerging links between the biological clock and the DNA damage response. Chromosoma (2007) 116:331–9. doi: 10.1007/s00412-007-0108-6
|
|
CC1=C2[C@H](C(=O)[C@@]3([C@H](C[C@@H]4[C@]([C@H]3[C@@H]([C@@](C2(C)C)(C[C@@H]1OC(=O)[C@@H]([C@H](C5=CC=CC=C5)NC(=O)C6=CC=CC=C6)O)O)OC(=O)C7=CC=CC=C7)(CO4)OC(=O)C)O)C)OC(=O)C |
Approved |
|
CLOCK-BMAL1
,
Arntl (gene)
,
BMAL1 expression (induction)
|
Bmal1,
de-repressing BMAL1,
BMAL1 expression modulation,
BMAL1 expression modulation
|
Sullivan, K.A., Grant, C.V., Jordan, K.R., Obrietan, K. and Pyter, L.M., 2022. Paclitaxel chemotherapy disrupts behavioral and molecular circadian clocks in mice. Brain, behavior, and immunity, 99, pp.106-118.
|
|
C1CC(C1)C(=O)NCCC2=CC=CC3=CC=CC=C32 |
Not approved |
|
Melatonin receptor
|
antagonist of melatonin receptors
|
Masson-Pévet, M., Recio, J., Guerrero, H.Y., Mocaer, E., Delagrange, P., Guardiola-Lemaitre, B. and Pévet, P., 1998. Effects of two melatonin analogues, S-20098 and S-20928, on melatonin receptors in the pars tuberalis of the rat. Journal of Pineal Research, 25(3), pp.172–176.
,
Willis, G.L. and Robertson, A.D., 2005. Recovery from experimental Parkinson's disease in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride treated marmoset with the melatonin analogue ML-23. Pharmacology Biochemistry and Behavior, 80(1), pp.9–26.
|
|
CC(=O)NCCC1=CNC2=C1C=C(C=C2)OCCO |
none |
possesses very different efficacies at the two melatonin receptors, beha full melatonin receptor agonist mt1, as an antagonist MT2 effect not studied
|
MT1
,
MT2
|
MT2 receptor antagonist,
MT1 receptor binding,
MT2 receptor ligand
|
Nonno, R., Lucini, V., Spadoni, G., Pannacci, M., Croce, A., Esposti, D., Balsamini, C., Tarzia, G., Fraschini, F. and Stankov, B.M., 2000. A new melatonin receptor ligand with mt1‐agonist and MT2‐antagonist properties. Journal of pineal research, 29(4), pp.234-240.
|
|
CC[C@@]1(C[C@H]2C[C@@](C3=C(CCN(C2)C1)C4=CC=CC=C4N3)(C5=C(C=C6C(=C5)[C@]78CCN9[C@H]7[C@@](C=CC9)([C@H]([C@@]([C@@H]8N6C)(C(=O)OC)O)OC(=O)C)CC)OC)C(=O)OC)O.OS(=O)(=O)O |
Approved |
Circadian modulation via Bmal1 activation (U2OS cells)
|
CLOCK-BMAL1
,
Arntl (gene)
,
BMAL1 expression (induction)
|
Bmal1,
BMAL1 expression modulation,
BMAL1 expression modulation,
Tubulin alpha-1A, beta, delta, gamma-1, epsilon chain Transcription factor AP-1 binding
|
Tamai, T.K., Nakane, Y., Ota, W., Kobayashi, A., Ishiguro, M., Kadofusa, N., Ikegami, K., Yagita, K., Shigeyoshi, Y., Sudo, M. and Nishiwaki‐Ohkawa, T., 2018. Identification of circadian clock modulators from existing drugs. EMBO molecular medicine, 10(5), p.e8724.
|
|
CC(NCCC1=C2C=C(OC)C=CC2=CC=C1)=O.O=C(O)[C@H](O)[C@@H](O)C(O)=O |
Not approved |
Circadian phase modulation via MT1/MT2 agonism
|
Melatonin receptor
|
Melatonin receptor binding
|
Audinot, V., Mailliet, F., Lahaye-Brasseur, C., Bonnaud, A., Le Gall, A., Amossé, C., Dromaint, S., Rodriguez, M., Nagel, N., Galizzi, J.P., Malpaux, B., Guillaumet, G., Lesieur, D., Lefoulon, F., Renard, P., Delagrange, P. and Boutin, J.A., 2003. New selective ligands of human cloned melatonin MT1 and MT2 receptors. Naunyn–Schmiedeberg’s Archives of Pharmacology, 367(6), pp.553–561.
,
Millan, M.J., Gobert, A., Lejeune, F., Dekeyne, A., Newman-Tancredi, A., Pasteau, V., Rivet, J.M. and Cussac, D., 2003. The novel melatonin agonist agomelatine (S20098) is an antagonist at 5-hydroxytryptamine2C receptors, blockade of which enhances the activity of frontocortical dopaminergic and adrenergic pathways. Journal of Pharmacology and Experimental Therapeutics, 306(3), pp.954–964.
,
Aguiar, C.C., Almeida, A.B., Araújo, P.V., Vasconcelos, G.S., Chaves, E.M., do Vale, O.C., Macêdo, D.S., Leal, L.K., de Barros Viana, G.S. and Vasconcelos, S.M., 2013. Effects of agomelatine on oxidative stress in the brain of mice after chemically induced seizures. Cellular and Molecular Neurobiology, 33(6), pp.825–835.
|
|
CC(=O)NCCC1=C(NC2=C1C=C(C=C2)OC)CN3CCC4=CC=CC=C43 |
none |
suggests it could potentially interact with the circadian system, which involves processes like sleep-wake cycles and hormone production
|
MT2
|
MT2 receptor antagonist
|
Zlotos, D.P., Attia, M.I., Julius, J., Sethi, S. and Witt-Enderby, P.A., 2009. 2-[(2, 3-Dihydro-1 H-indol-1-yl) methyl] melatonin Analogues: A Novel Class of MT2-Selective Melatonin Receptor Antagonists. Journal of medicinal chemistry, 52(3), pp.826-833.
|
|
CC1=CC2=C(C=C1C)N(C3=NC(=O)NC(=O)C3=N2)C[C@@H]([C@@H]([C@@H](CO)O)O)O |
Approved |
restored the circadian oscillations of differentiation-related genes and core clock genes that were reduced by D-galactose
|
PER2 gene expression
|
Restores oscillations of circadian genes
|
Lee, S., Sim, Y., Lee, M., Choi, Y., Lim, J.Y., Lee, J.H. and Kim, E., 2025. Riboflavin as a circadian modulator mitigates D-galactose-induced muscle senescence via oxidative stress and mitochondrial regulation in C2C12 cells. Journal of Functional Foods, 130, p.106924.
|
|
CC(C1CC1)N2C=NC3=C(N=C(N=C32)NCCN(C)C)NCC4=CC(=CC=C4)C(F)(F)F |
Not approved |
showed stronger period effects (0.32 μM for 5 h period lengthening) in a cell-based circadian assay
|
CKI delta
|
Inhibits casein kinase 1 delta (CKIδ) activity,
Inhibits CKIδ
|
Lee, J.W., Hirota, T., Ono, D., Honma, S., Honma, K.I., Park, K. and Kay, S.A., 2019. Chemical control of mammalian circadian behavior through dual inhibition of casein kinase Iα and δ. Journal of medicinal chemistry, 62(4), pp.1989-1998.
|
|
O=C1NC2=C(C=CC=C2)/C1=C\C3=C(OC)C=C(OC)C=C3OC |
None |
can induce a phase delay in circadian rhythms
|
CK1 epsilon
|
Targets CK1 epsilon
|
Cheong, J.K., Hung, N.T., Wang, H., Tan, P., Voorhoeve, P.M., Lee, S.H. and Virshup, D.M., 2011. IC261 induces cell cycle arrest and apoptosis of human cancer cells via CK1δ/ɛ and Wnt/β-catenin independent inhibition of mitotic spindle formation. Oncogene, 30(22), pp.2558-2569.
|
|
CC1=CC2=C(C=C1C(=C)C3=CC=C(C=C3)C(=O)O)C(CCC2(C)C)(C)C |
Approved |
Circadian modulation detected in Bmal1-reporter assay
|
CLOCK-BMAL1
,
BMAL1 expression (induction)
|
Bmal1,
de-repressing BMAL1,
BMAL1 expression modulation,
BMAL1 expression modulation
|
Tamai, T.K., Nakane, Y., Ota, W., Kobayashi, A., Ishiguro, M., Kadofusa, N., Ikegami, K., Yagita, K., Shigeyoshi, Y., Sudo, M. and Nishiwaki‐Ohkawa, T., 2018. Identification of circadian clock modulators from existing drugs. EMBO molecular medicine, 10(5), p.e8724.
|
|
CC(=O)NCCN1C2=CC(=C(C=C2N=C1OC)Cl)OC |
not approved |
Melatonin receptor agonism
|
Melatonin receptor
|
Melatonin receptor binding
|
Ferreira, M.A. Jr, Azevedo, H., Mascarello, A., Segretti, N.D., Russo, E., Russo, V. and Guimarães, C.R.W., 2021. Discovery of ACH-000143: a novel potent and peripherally preferred melatonin receptor agonist that reduces liver triglycerides and steatosis in diet-induced obese rats. Journal of Medicinal Chemistry, 64(4), pp.1904–1929.
|
|
CC(=O)N/C=C/C1=C(C=CC2=C1C=C(C=C2)OC)OC |
none |
MT1 agonist with poorly described
|
MT1
|
MT1 receptor binding
|
Morellato, L., Lefas-Le Gall, M., Langlois, M., Caignard, D.H., Renard, P., Delagrange, P. and Mathé-Allainmat, M., 2013. Synthesis of new N-(arylcyclopropyl) acetamides and N-(arylvinyl) acetamides as conformationally-restricted ligands for melatonin receptors. Bioorganic & medicinal chemistry letters, 23(2), pp.430-434.
|
|
CC(CC1=CC2=C(C=C1)OCO2)NC |
Not approved |
Disrupts sleep,
alters the response of the circadian clock to a photic and non-photic stimulus
|
SLC18A2
,
HTR2C
,
SLC6A3
,
SLC6A2
,
HTR2A
,
SLC6A4
,
HTR2B
|
Synaptic vesicular amine transporter interaction,
5-hydroxytryptamine receptor 2C binding,
Sodium-dependent dopamine transporter binding,
Sodium-dependent noradrenaline transporter,
5-hydroxytryptamine receptor 2A binding,
Sodium-dependent serotonin transporter,
5-hydroxytryptamine receptor 2B binding
|
Koczor, C.A., Ludlow, I., Hight, R.S., Jiao, Z., Fields, E., Ludaway, T., Russ, R., Torres, R.A. and Lewis, W., 2015. Ecstasy (MDMA) alters cardiac gene expression and DNA methylation: implications for circadian rhythm dysfunction in the heart. Toxicological Sciences, 148(1), pp.183-191.
,
Colbron, S., Jones, M. and Biello, S.M., 2002. MDMA alters the response of the circadian clock to a photic and non-photic stimulus. Brain research, 956(1), pp.45-52.
,
McCann, U.D. and Ricaurte, G.A., 2007. Effects of (±) 3, 4‐Methylenedioxymethamphetamine (MDMA) on Sleep and Circadian Rhythms. The Scientific World Journal, 7(1), pp.231-238.
|
|
C1=CC(=C(C=C1C(=O)O)O)O |
none |
reduced reactive oxygen species (ROS) levels and upregulated antioxidant enzymes,
promoted skin barrier integrity by increasing structural protein and ceramide-related gene expression,
enhanced cellular longevity markers, such as cyclin-dependent kinase inhibitor 1B (CDKN1B) and telomerase reverse transcriptase (TERT)
|
RORA
,
RORα
|
Core clock modulation,
ROR
|
Lee, J., Kim, J.Y., Lee, J.H. and Lee, K.H., 2025. Protocatechuic acid modulates the circadian rhythm of keratinocytes and maintains skin barrier integrity. Molecular Biology Reports, 52(1), p.765.
|
|
CCC1=C2C=COC2=C(OCC(F)CO)C=C1 |
none |
directly targets BMAL1, impacting its ability to regulate gene expression within the circadian clock and immune system
|
CLOCK-BMAL1
,
BMAL1
|
Bmal1,
Interferes with CLOCK–BMAL1,
Targets BMAL1–CLOCK DNA-binding activity
|
Zeng, Y., Guo, Z., Wu, M., Chen, F. and Chen, L., 2024. Circadian rhythm regulates the function of immune cells and participates in the development of tumors. Cell death discovery, 10(1), p.199.
|
|
CC(=O)N1CCN(CC1)C2=CC=C(C=C2)OC[C@H]3CO[C@](O3)(CN4C=CN=C4)C5=C(C=C(C=C5)Cl)Cl |
Approved |
Circadian modulator activity
|
CLOCK-BMAL1
,
BMAL1 expression (induction)
|
BMAL1 expression modulation,
BMAL1 expression modulation,
Binding Androgen receptor, 17-hydroxylase, Steroid 21-hydroxylase, 11-hydroxylase, Cytochrome P450 19A1, Potassium voltage-
|
Tamai, T.K., Nakane, Y., Ota, W., Kobayashi, A., Ishiguro, M., Kadofusa, N., Ikegami, K., Yagita, K., Shigeyoshi, Y., Sudo, M. and Nishiwaki‐Ohkawa, T., 2018. Identification of circadian clock modulators from existing drugs. EMBO molecular medicine, 10(5), p.e8724.
|
|
C1=CC=C2C(=C1)C3=NN(C4=CC=CC(=C43)C2=O)CCO |
None |
Period lengthening
|
JNK
|
JNK kinase mediated circadian rhythm modulation
|
Park, W.R., Choi, B., Kim, Y.J., Kim, Y.H., Park, M.J., Kim, D.I., Choi, H.S. and Kim, D.K., 2022. Melatonin regulates iron homeostasis by inducing hepcidin expression in hepatocytes. International Journal of Molecular Sciences, 23(7), p.3593.
,
Wu, H.M., Shen, Q.Y., Fang, L., Zhang, S.H., Shen, P.T., Liu, Y.J. and Liu, R.Y., 2016. JNK-TLR9 signal pathway mediates allergic airway inflammation through suppressing melatonin biosynthesis. Journal of Pineal Research, 60(4), pp.415–423.
|