|
Unknown |
None |
|
GUT MICROBIOTA
|
Unknown metabolites
|
|
|
C1=CC=C2C(=C1)C(=C(N2)O)C3=NC4=CC=CC=C4C3=O |
none |
period shortening of the mammalian circadian clock by specific inhibition of GSK-3β
|
GSK-3α/β
|
Highly selective, ATP-competitive inhibition of GSK-3 (both α and β isoforms),
Dual inhibitor of Cyclin-dependent kinases (CDK) and Glycogen Synthase Kinase-3 (GSK-3),
GSK‑3 Inhibition,
Selective GSK-3β Inhibition:,
inhibits glycogen synthase kinase-3β (GSK-3β)
|
Hirota, T., Lewis, W.G., Liu, A.C., Lee, J.W., Schultz, P.G. and Kay, S.A., 2008. A chemical biology approach reveals period shortening of the mammalian circadian clock by specific inhibition of GSK-3β. Proceedings of the National Academy of Sciences, 105(52), pp.20746-20751.
|
|
C1CCC(CC1)N2C=NC(=C2C3=NC(=NC=C3)N)C4=CC=C(C=C4)F.Cl. Cl |
None |
|
CKI delta
|
Inhibits CK1δ,
Inhibits casein kinase 1 delta (CKIδ) activity,
Non-specific kinase inhibitor
|
Wagner, P.M., Fornasier, S.J. and Guido, M.E., 2024. Pharmacological modulation of the cytosolic oscillator affects glioblastoma cell biology. Cellular and Molecular Neurobiology, 44(1), p.51.
|
|
[Li+].[Li+].C(=O)([O-])[O-] |
Approved |
|
mPer2
,
mPer1
,
CRY1-PER2 complex
,
CRY1
,
CRY1
,
Per2 expression
|
inhibits glycogen synthase kinase-3β (GSK-3β)
|
Rohr, K.E. and McCarthy, M.J., 2022. The impact of lithium on circadian rhythms and implications for bipolar disorder pharmacotherapy. Neuroscience letters, 786, p.136772.
|
|
CS(=O)C1=CC=C(C=C1)C2=NC(=C(N2)C3=CC=NC=C3)C4=CC=C(C=C4)F |
None |
|
p38 kinase
|
Core clock modulation,
p38 signaling
|
|
|
COC1=C(N=CC(=C1OC)N2C(=O)N(C3=C(S2(=O)=O)C=CC=N3)CC4=C(C=C(C=C4F)F)F |
Not approved |
primarily affect circadian rhythms by promoting sleep, particularly reducing wakefulness after sleep onset and improving sleep maintenance
|
orexin receptor subtypes (OX1 and OX2)
|
Dopamine receptor antagonist,
Orexin Receptor Antagonism
|
Christopher, J.A., Aves, S.J., Brown, J., Errey, J.C., Klair, S.S., Langmead, C.J., Mace, O.J., Mould, R., Patel, J.C., Tehan, B.G. and Zhukov, A., 2015. Discovery of HTL6641, a dual orexin receptor antagonist with differentiated pharmacodynamic properties. MedChemComm, 6(5), pp.947-955.
|
|
C[C@@H]1CC(=O)C=C([C@]12C(=O)C3=C(O2)C(=C(C=C3OC)OC)Cl)OC |
Approved |
~0.3 h shortening of the period of circadian T(b) rhythms in mice kept under conditions of constant darkness (P < 0.01)
|
CLOCK-BMAL1
,
Heme
|
Core clock modulation,
Affects heme,
Affects heme biosynthesis
|
Iwadate, R., Satoh, Y., Watanabe, Y., Kawai, H., Kudo, N., Kawashima, Y., Mashino, T. and Mitsumoto, A., 2012. Impairment of heme biosynthesis induces short circadian period in body temperature rhythms in mice. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 303(1), pp.R8-R18.
|
|
C1=CC2=C(C=C1O)C(=O)OC3=C2C=CC(=C3)O |
Not approved |
|
Arntl (gene)
,
BMAL1 expression (induction)
,
Per2 expression
,
GUT MICROBIOTA
|
Bmal1,
de-repressing BMAL1,
BMAL1 expression modulation,
BMAL1 expression modulation,
Activation of CLOCK/Bmal1 mediated transcription
|
Du, Y., Chen, X., Kajiwara, S. and Orihara, K., 2024. Effect of Urolithin A on the Improvement of Circadian Rhythm Dysregulation in Intestinal Barrier Induced by Inflammation. Nutrients, 16(14), p.2263.
|
|
Lactobacillus delbrueckii |
none |
restores normal circadian rhythms,
improves circadian rhythms in pigs
|
GUT MICROBIOTA
|
protect,
Circadian Clock Impact,
Unknown metabolites
|
Luo, W., Yin, Z., Zhang, M., Huang, X. and Yin, J., 2024. Dietary Lactobacillus delbrueckii Affects Ileal Bacterial Composition and Circadian Rhythms in Pigs. Animals, 14(3), p.412.
|
|
CC12CC(C3(C(C1CC(C2(C(=O)CO)O)O)CCC4=CC(=O)C=CC43C)F)O |
Approved |
alters the circadian rhythm
|
Corticosteroid hormone receptor
|
Core clock modulation,
Affects "Circadian rhtyhm signaling",
Calcium signaling,
Glutamat receptor signaling,
Corticosteroid Hormone Receptor Agonist
|
Smit-McBride, Z., Moisseiev, E., Modjtahedi, S.P., Telander, D.G., Hjelmeland, L.M. and Morse, L.S., 2016. Comparison of in vivo gene expression profiling of RPE/choroid following intravitreal injection of dexamethasone and triamcinolone acetonide. Journal of Ophthalmology, 2016(1), p.9856736.
|
|
COC(=O)N1CCC[C@@H]([C@@H]1COC2CCC(CC2)C3=CC=CC=C3)NS(=O)(=O)C |
Not approved |
improve wakefulness in individuals with certain sleep disorders
|
orexin receptor subtypes (OX1 and OX2)
|
OX₂R Activation
|
Yin, J., Kang, Y., McGrath, A.P., Chapman, K., Sjodt, M., Kimura, E., Okabe, A., Koike, T., Miyanohana, Y., Shimizu, Y. and Rallabandi, R., 2022. Molecular mechanism of the wake-promoting agent TAK-925. Nature communications, 13(1), p.2902.
|
|
CC1=NC2=C(O1)C=C(C=C2)NC(=O)NC3=C4C(=NC=C3)C=CC=N4 |
Not approved |
can attenuate the sleep-promoting effects of the OX2R antagonist
|
orexin receptor subtypes (OX1 and OX2)
|
OX₁R Antagonism
|
Morairty, S.R., Revel, F.G., Malherbe, P., Moreau, J.L., Valladao, D., Wettstein, J.G., Kilduff, T.S. and Borroni, E., 2012. Dual hypocretin receptor antagonism is more effective for sleep promotion than antagonism of either receptor alone. PloS one, 7(7), p.e39131.
|
|
C[C@H]1CC[C@H](N(C1)C(=O)C2=C(C(=CC=C2)F)OC)CNC3=NC=C(C=C3)Br |
Not approved |
sleep-promoting effects
|
orexin receptor subtypes (OX1 and OX2)
|
OX₁ Receptor Blockade
|
Aluisio, L., Fraser, I., Berdyyeva, T., Tryputsen, V., Shireman, B.T., Shoblock, J., Lovenberg, T., Dugovic, C. and Bonaventure, P., 2014. Pharmacological or genetic orexin1 receptor inhibition attenuates MK-801 induced glutamate release in mouse cortex. Frontiers in neuroscience, 8, p.107.
|
|
Clc1ccc(c(c1)Br)CNc1cccc(c1)c1nnc[nH]1 |
None |
phase advance,
lengthened the periods of BMAL1 and PER2
|
MT1
|
MT1 receptor binding
|
Stein, R.M., Kang, H.J., McCorvy, J.D., Glatfelter, G.C., Jones, A.J., Che, T., Slocum, S., Huang, X.P., Savych, O., Moroz, Y.S. and Stauch, B., 2020. Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Nature, 579(7800), pp.609-614.
|
|
C[C@]12CCC(=O)C=C1CC[C@@H]3[C@@H]2[C@H](C[C@]4([C@H]3CC[C@@]4(C(=O)CO)O)C)O |
Approved |
|
Corticosteroid hormone receptor
|
Glucocorticoid Signaling,
Glucocorticoid receptors
|
Kanki, M. and Young, M.J., 2021. Corticosteroids and circadian rhythms in the cardiovascular system. Current Opinion in Pharmacology, 57, pp.21-27.
|
|
CC12CCC(=O)C=C1CCC3C2C(CC4(C3CCC4C(=O)CO)C=O)O |
Approved |
Aldosterone influences the expression of clock genes such as Per1, Per2, and Bmal1 in cardiomyoblasts
|
mPer2
,
mPer1
,
Arntl (gene)
,
BMAL1 expression (induction)
|
PER gene exspression modulation,
BMAL1 expression modulation,
BMAL1 expression modulation,
Activation of CLOCK/Bmal1 mediated transcription,
influences HPA axis
|
Tanaka, K., Ashizawa, N., Kawano, H., Sato, O., Seto, S., Nishihara, E., Terazono, H., Isomoto, S., Shinohara, K. and Yano, K., 2007. Aldosterone induces circadian gene expression of clock genes in H9c2 cardiomyoblasts. Heart and vessels, 22, pp.254-260.
|
|
CN1C2=C(C(=O)N(C1=O)C)NC=N2 |
Approved |
cause period lengthening in a concentration-dependent manner
|
PI3K/Akt
,
NF-kB
|
Nuclear Factor Kappa B (NF- κB),
cAMP signaling cascade,
Modulation of PI3K/Akt
|
Ehret, C.F., Potter, V.R. and Dobra, K.W., 1975. Chronotypic action of theophylline and of pentobarbital as circadian zeitgebers in the rat. Science, 188(4194), pp.1212-1215.
,
Szarłowicz, J., Mazur, M., Waz, D., Goliszek, Z., Sobek, K.Ł., Tabin-Barczak, W., Sokołowska, A., Fikas, K., Chwaliszewski, K. and Samuła, S., 2025. Theophylline Revisited. Mechanisms, Challenges, and New Horizons. Quality in Sport, 37, pp.57009-57009.
,
Olivares-Yañez, C., Alessandri, M.P., Salas, L. and Larrondo, L.F., 2023. Methylxanthines modulate circadian period length independently of the action of phosphodiesterase. Microbiology Spectrum, 11(4), pp.e03727-22.
|
|
CN(C)CCC1=CNC2=C1C(=CC=C2)O |
Not approved |
led to delayed REM sleep onset and reduced NREM sleep maintenance for up to approximately 3 h after dosing,
is a rapidly-emerging treatment for depression
|
5-HT 2A R
|
Serotoninergic signaling,
Dopamine receptor binding
|
Thomas, C.W., Blanco-Duque, C., Bréant, B.J., Goodwin, G.M., Sharp, T., Bannerman, D.M. and Vyazovskiy, V.V., 2022. Psilocin acutely alters sleep-wake architecture and cortical brain activity in laboratory mice. Translational psychiatry, 12(1), p.77.
,
Reid, M.J., Kettner, H., Blanken, T.F., Weiss, B. and Carhartt-Harris, R., 2024. Preliminary Evidence of Sleep Improvements Following Psilocybin Administration, and their Involvement in Antidepressant Therapeutic Action. Current psychiatry reports, pp.1-11.
|
|
CCC1=C2C=COC2=C(OCCCO)C=C1 |
none |
directly targets BMAL1, impacting its ability to regulate gene expression within the circadian clock and immune system
|
CLOCK-BMAL1
,
BMAL1
|
Core clock modulation,
Bmal1
|
Zeng, Y., Guo, Z., Wu, M., Chen, F. and Chen, L., 2024. Circadian rhythm regulates the function of immune cells and participates in the development of tumors. Cell death discovery, 10(1), p.199.
,
Pu, H., Bailey, L.C., Bauer, L.G., Voronkov, M., Baxter, M., Huber, K.V., Khorasanizadeh, S., Ray, D. and Rastinejad, F., 2025. Pharmacological targeting of BMAL1 modulates circadian and immune pathways. Nature Chemical Biology, pp.1-10.
|
|
C1=CC(=C2C(=C1)C=CO2)OCCCO |
none |
directly targets BMAL1, impacting its ability to regulate gene expression within the circadian clock and immune system
|
CLOCK-BMAL1
,
BMAL1
|
Bmal1,
Activation of CLOCK/Bmal1 mediated transcription,
Interferes with CLOCK–BMAL1,
Targets BMAL1–CLOCK DNA-binding activity
|
Pu, H., Bailey, L.C., Bauer, L.G., Voronkov, M., Baxter, M., Huber, K.V., Khorasanizadeh, S., Ray, D. and Rastinejad, F., 2025. Pharmacological targeting of BMAL1 modulates circadian and immune pathways. Nature Chemical Biology, pp.1-10.
|
|
CC1(C)CC2=C(CO)C3=C(COC3=O)C(=C2C1)O |
None |
Advances circadian rhtyhms
|
mPer2
,
Per2 expression
|
Core clock modulation,
Binding with factors affine to Period2 gene promoter
|
Kobayashi, Y., Lu, Y., Li, N., Endo, N., Sotome, K., Ueno, K., Tahara, Y. and Ishihara, A., 2024. A new phthalide derivative from the mushroom Cyclocybe cf. erebia culture filtrate affects the phase of circadian rhythms in mouse fibroblasts. Bioscience, Biotechnology, and Biochemistry, p.zbae187.
|
|
COC1=C(C=CC(=C1)C2=CC(=O)C3=C(C(=C(C(=C3O2)OC)O)OC)O)O |
none |
restores normal circadian rhythms
|
CLOCK-BMAL1
,
BMAL1 expression (induction)
|
Core clock modulation,
Bmal1,
de-repressing BMAL1,
BMAL1 expression modulation,
BMAL1 expression modulation,
Activation of CLOCK/Bmal1 mediated transcription
|
Mawatari, K., Koike, N., Nohara, K., Wirianto, M., Uebanso, T., Shimohata, T., Shikishima, Y., Miura, H., Nii, Y., Burish, M.J. and Yagita, K., 2023. The polymethoxyflavone sudachitin modulates the circadian clock and improves liver physiology. Molecular Nutrition & Food Research, 67(9), p.2200270.
|
|
C1=CC=C(C=C1)C(C2=CC=CC=C2)S(=O)CC(=O)N |
Approved |
dose dependently increases wakefulness at the expense of slow-wave and paradoxical sleep with no increase in locomotor activity per unit of time awake
|
DAT ( human Dopamine transporter)
|
DAT interaction (human dopamine transporter)
|
Kim, D., 2012. Practical use and risk of modafinil, a novel waking drug. Environmental health and toxicology, 27, p.e2012007.
,
Webb, I.C., Pollock, M.S. and Mistlberger, R.E., 2006. Modafinil [2-[(diphenylmethyl) sulfinyl] acetamide] and circadian rhythms in syrian hamsters: assessment of the chronobiotic potential of a novel alerting compound. The Journal of pharmacology and experimental therapeutics, 317(2), pp.882-889.
,
Uyhelji, H.A., Munster, S.K., White, V.L. and Nicholson, S.J., 2023. Gene expression biomarkers of the response to sleep loss with and without modafinil (No. DOT/FAA/AM-23/25). United States. Department of Transportation. Federal Aviation Administration. Office of Aviation. Civil Aerospace Medical Institute.
|
|
C1=CC2=C(C=C1F)C3=C(C=CC(=C3)F)N2C[C@H](CN4CCNC4=O)O |
none |
disrupts the circadian clock specifically in cancer cells,
disrupts glioblastoma clock
|
CRY2
,
Mouse CRY2 with shp656
|
Selectively stabilizes CRY2
|
Miller, S., Kesherwani, M., Chan, P., Nagai, Y., Yagi, M., Cope, J., Tama, F., Kay, S.A. and Hirota, T., 2022. CRY2 isoform selectivity of a circadian clock modulator with antiglioblastoma efficacy. Proceedings of the National Academy of Sciences, 119(40), p.e2203936119.
|
|
C1=CC2=C(C=C1F)C3=C(C=CC(=C3)F)N2CC(CN4CCNC4=O)O |
None |
disrupts glioblastoma clock
|
CRY2
,
Mouse CRY2 with shp656
|
Selectively stabilizes CRY2
|
Miller, S., Kesherwani, M., Chan, P., Nagai, Y., Yagi, M., Cope, J., Tama, F., Kay, S.A. and Hirota, T., 2022. CRY2 isoform selectivity of a circadian clock modulator with antiglioblastoma efficacy. Proceedings of the National Academy of Sciences, 119(40), p.e2203936119.
|